kinematic geometry - significado y definición. Qué es kinematic geometry
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es kinematic geometry - definición

TWO GEOMETRIES BASED ON AXIOMS CLOSELY RELATED TO THOSE SPECIFYING EUCLIDEAN GEOMETRY
Non-euclidean geometries; NonEuclidean geometry; Non-Euclidean; Noneuclidean geometry; Non-Euclidian geometry; Non-Euclidean geometries; Non-euclidian geometry; Models of non-Euclidean geometry; Non-Euclidena geometry; Non-Euclidean space; Non-Euclidean Geometry; Non euclidian geometry; Models of Non-Euclidean geometry; Non-euclidean Geometry; Non-euclidean geometry; History of non-Euclidean geometry; Kinematic geometry
  • Lambert quadrilateral in hyperbolic geometry}}
  • Saccheri quadrilaterals in the three geometries}}
  • On a sphere, the sum of the angles of a triangle is not equal to 180°. The surface of a sphere is not a Euclidean space, but locally the laws of the Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is very nearly 180°.

Models of non-Euclidean geometry         
Models of non-Euclidean geometry are mathematical models of geometries which are non-Euclidean in the sense that it is not the case that exactly one line can be drawn parallel to a given line l through a point that is not on l. In hyperbolic geometric models, by contrast, there are infinitely many lines through A parallel to l, and in elliptic geometric models, parallel lines do not exist.
Non-Euclidean geometry         
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
non-Euclidean         
¦ adjective denoting systems of geometry that do not obey Euclidean postulates, especially that only one line through a given point can be parallel to a given line.

Wikipedia

Non-Euclidean geometry

In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry.